19 listopada 2017


W pierwszej części artykułu pisaliśmy o tym, jakie cechy mają algorytmy numeryczne i jak to w praktyczny sposób rzutuje na poprawność i dokładność symulacji przepływowych. Teraz przyjrzymy się nieco bliżej modelowaniu turbulencji.

Bartosz Górecki

W praktyce przemysłowej, duża część modelowanych przepływów, dotyczy właśnie tych, w których występuje turbulencja. Do modelowania turbulencji służy obecnie kilka różnych podejść. Najpowszechniejszym z nich, szeroko stosowanym w praktyce przemysłowej jest technika RANS (Reynolds Averaged Navier-Stokes). Jest to technika bazująca na uśrednieniu w czasie równań Naviera-Stokesa opisujących dynamikę płynu. Zakłada, że możemy turbulencję (która z natury rzeczy jest procesem niestacjonarnym) reprezentować jako uśrednioną w czasie i wszystkie efekty turbulentnego mieszania modelować w tymże uśrednionym (wtedy już stacjonarnym) polu przepływu. Technika ta jest niemal jedyną szeroko stosowaną, gdyż dwie pozostałe (LES i DNS) są o wiele bardziej kosztowne obliczeniowo.

obliczenia CFD
Rys. 1    Poprawne rozwiązanie pola temperatury płynu przy opływie płaskiej płytki z liczbą Reynoldsa 2000. Do obliczeń wykorzystano QuickerSim CFD Toolbox for MATLAB.

Każdy program do obliczeń CFD bazujący na technice RANS ma możliwość uruchomienia i wyboru jednego z istniejących modeli turbulencji. W poprzedniej części artykułu dużo uwagi poświęciliśmy zagadnieniom tworzenia siatek obliczeniowych mogących wiernie reprezentować przepływ. Oczywiste jest więc już dla nas to, jak należy zagęścić siatkę w pobliżu ścianek materialnych. Co jednak z innymi ustawieniami? Jak warunki brzegowe wybrane przez użytkownika mogą wpłynąć na wyniki obliczeń? Czasem, ze względu na brak dokładnych danych, bywa, że użytkownik zadaje wartości warunków brzegowych w sposób nie do końca przemyślany. Kolejne pytanie dotyczy samej fizyki zjawiska. Przyjrzyjmy się tu dokładniej przykładowi wziętemu z jednej z dużych firm – modelowano pozornie prosty przepływ płynu wraz z wymianą ciepła w rurze. Prędkość przepływu i wymiary liniowe instalacji były takie, że liczba Reynoldsa była na poziomie 2000. W firmie porównywano wyniki uzyskiwane dwoma różnymi programami CFD: Ansys Fluent i QuickerSim. W pierwszych testach wartości temperatury płynu na wylocie z instalacji różniły się o kilkadziesiąt stopni między obydwoma programami. Okazało się, że błąd wynikał z nieświadomości użytkownika. Liczba Reynoldsa na poziomie 2000 oznacza przepływ laminarny w rurze. Tam nie ma turbulencji. Użytkownik musi być świadomy, że włączenie modelowania turbulencji (jak zrobił we Fluencie) oznacza rozwiązywanie dodatkowych równań. Z nich wyznaczana jest lepkość turbulentna. Na podstawie lepkości turbulentnej wyznaczana jest turbulentna dyfuzyjność termiczna. Modele typu RANS modelują ją jako iloraz lepkości turbulentnej i turbulentnej liczby Prandtla. I tu użytkownik musi być świadomy tego, jakie cechy ma wybrany przez niego model turbulencji i co rozwiązuje użytkowany program. Warto podkreślić, że modele turbulencji nie są ogólne.


cały artykuł dostępny jest w wydaniu 12 (111) grudzień 2016