Projektowanie i Konstrukcje Inżynierskie
  • STRONA GŁÓWNA
  • Aktualności
    Nowa technologia produkcji drzwi samolotów pasażerskich

    Nowa technologia produkcji drzwi samolotów pasażerskich

    superjammer najsilniejsze ramię robota

    Najsilniejsze ramię robota

    chwytak z taśmy mierniczej

    Chwytak z taśmy mierniczej

    Nowy stop miedzi do zastosowań wysokotemperaturowych

    Nowy stop miedzi do zastosowań wysokotemperaturowych

    Cyklokopter BlackBird

    Cyklokopter BlackBird w powietrzu

    GFG Peralta S

    Retrofuturystyczne perełki motoryzacji

    Nowa technologia recyklingu włókien węglowych

    Nowa technologia recyklingu włókien węglowych

    podwodne górnictwo

    Wojna celna i minerały na dnie morza

    Robot na gaz

    Robot na gaz

  • Artykuły
    • Wszystkie artykuły
    • Analizy, symulacje
    • Badania, analizy
    • Części maszyn i urządzeń
    • Historia
    • Inne
    • Konstrukcje
    • Maszyny i urządzenia
    • Materiały
    • Projektowanie
    • Rozwiązania
    • Technologie
    Przenośnik rolkowy

    Automatyzacja transportu wewnętrznego

    Pierścienie Ustalające Smalley Spirolox

    Pierścienie ustalające Smalley Spirolox

    badanie materiałowe polimerów na potrzeby MES

    Badania materiałowe i modelowanie polimerów na potrzeby symulacji MES

    Wywrotnica czołowa o ruchu kontrolowanym

    Historia jednego patentu – czyli dlaczego warto znać teorię

    separator do docierania wałków

    Docieranie otworów i powierzchni walcowych

    Honowanie na standardowych centrach obróbczych

    Honowanie na standardowych centrach obróbczych

    mantra-ford ms80 1969

    Spór o aerodynamikę: skrzydła w Formule 1

    Efektywność i optymalizacja technologii

    Efektywność i optymalizacja technologii

    Resztkowa poduszka tworzywa w procesie wtrysku

    Resztkowa poduszka tworzywa w procesie wtrysku

    Nadsmarowność przełom w tribologii

    Nadsmarowność – przełom w tribologii?

    obróbka wykończająca honowanie

    Obróbka wykończająca: honowanie

    Prognozowanie wyboczenia wskutek odkształceń termicznych

    Prognozowanie wyboczenia wskutek odkształceń termicznych

    Wybrane aspekty produktywnego skrawania na wieloosiowych obrabiarkach CNC

    Wybrane aspekty produktywnego skrawania na wieloosiowych obrabiarkach CNC; cz. 7

    pamar axial engine

    Osiowe silniki wewnętrznego spalania

    Analiza i synteza w projektowaniu obrabiarek

    Analiza i synteza w projektowaniu obrabiarek

    Wybrane tematy:

    • robotyzacja
    • spawanie
    • obróbka skrawaniem
    • MES
    • klejenie
    • tworzywa sztuczne
    • motoryzacja
    • CAD
    • polskie projekty
    • lotnictwo
    • druk 3D
    • silniki
    • formy wtryskowe
    • budowa maszyn
    • technologie łączenia
    • obliczenia
    • kompozyty
    • ceramika techniczna
    • Analizy, symulacje
    • Badania, analizy
    • Technologie
    • Maszyny i urządzenia
    • Części maszyn i urządzeń
    • Konstrukcje
    • Rozwiązania
    • Projektowanie
    • Materiały
    • Historia
    • Inne
  • Czasopismo
    • O czasopiśmie
    • Jak zakupić
    • Archiwum
      • Archiwum 2025
      • Archiwum 2024
      • Archiwum 2023
      • Archiwum 2022
      • Archiwum 2021
      • Archiwum 2020
      • Archiwum 2019
      • Archiwum 2018
      • Archiwum 2017
      • Archiwum 2016
      • Archiwum 2015
      • Archiwum 2014
      • Archiwum 2013
      • Archiwum 2012
      • Archiwum 2011
      • Archiwum 2010
      • Archiwum 2009
      • Archiwum 2008
      • Archiwum 2007
  • Kontakt
  • ­
Nie znaleziono
Zobacz wszystkie wyniki
Projektowanie i Konstrukcje Inżynierskie
  • STRONA GŁÓWNA
  • Aktualności
    Nowa technologia produkcji drzwi samolotów pasażerskich

    Nowa technologia produkcji drzwi samolotów pasażerskich

    superjammer najsilniejsze ramię robota

    Najsilniejsze ramię robota

    chwytak z taśmy mierniczej

    Chwytak z taśmy mierniczej

    Nowy stop miedzi do zastosowań wysokotemperaturowych

    Nowy stop miedzi do zastosowań wysokotemperaturowych

    Cyklokopter BlackBird

    Cyklokopter BlackBird w powietrzu

    GFG Peralta S

    Retrofuturystyczne perełki motoryzacji

    Nowa technologia recyklingu włókien węglowych

    Nowa technologia recyklingu włókien węglowych

    podwodne górnictwo

    Wojna celna i minerały na dnie morza

    Robot na gaz

    Robot na gaz

  • Artykuły
    • Wszystkie artykuły
    • Analizy, symulacje
    • Badania, analizy
    • Części maszyn i urządzeń
    • Historia
    • Inne
    • Konstrukcje
    • Maszyny i urządzenia
    • Materiały
    • Projektowanie
    • Rozwiązania
    • Technologie
    Przenośnik rolkowy

    Automatyzacja transportu wewnętrznego

    Pierścienie Ustalające Smalley Spirolox

    Pierścienie ustalające Smalley Spirolox

    badanie materiałowe polimerów na potrzeby MES

    Badania materiałowe i modelowanie polimerów na potrzeby symulacji MES

    Wywrotnica czołowa o ruchu kontrolowanym

    Historia jednego patentu – czyli dlaczego warto znać teorię

    separator do docierania wałków

    Docieranie otworów i powierzchni walcowych

    Honowanie na standardowych centrach obróbczych

    Honowanie na standardowych centrach obróbczych

    mantra-ford ms80 1969

    Spór o aerodynamikę: skrzydła w Formule 1

    Efektywność i optymalizacja technologii

    Efektywność i optymalizacja technologii

    Resztkowa poduszka tworzywa w procesie wtrysku

    Resztkowa poduszka tworzywa w procesie wtrysku

    Nadsmarowność przełom w tribologii

    Nadsmarowność – przełom w tribologii?

    obróbka wykończająca honowanie

    Obróbka wykończająca: honowanie

    Prognozowanie wyboczenia wskutek odkształceń termicznych

    Prognozowanie wyboczenia wskutek odkształceń termicznych

    Wybrane aspekty produktywnego skrawania na wieloosiowych obrabiarkach CNC

    Wybrane aspekty produktywnego skrawania na wieloosiowych obrabiarkach CNC; cz. 7

    pamar axial engine

    Osiowe silniki wewnętrznego spalania

    Analiza i synteza w projektowaniu obrabiarek

    Analiza i synteza w projektowaniu obrabiarek

    Wybrane tematy:

    • robotyzacja
    • spawanie
    • obróbka skrawaniem
    • MES
    • klejenie
    • tworzywa sztuczne
    • motoryzacja
    • CAD
    • polskie projekty
    • lotnictwo
    • druk 3D
    • silniki
    • formy wtryskowe
    • budowa maszyn
    • technologie łączenia
    • obliczenia
    • kompozyty
    • ceramika techniczna
    • Analizy, symulacje
    • Badania, analizy
    • Technologie
    • Maszyny i urządzenia
    • Części maszyn i urządzeń
    • Konstrukcje
    • Rozwiązania
    • Projektowanie
    • Materiały
    • Historia
    • Inne
  • Czasopismo
    • O czasopiśmie
    • Jak zakupić
    • Archiwum
      • Archiwum 2025
      • Archiwum 2024
      • Archiwum 2023
      • Archiwum 2022
      • Archiwum 2021
      • Archiwum 2020
      • Archiwum 2019
      • Archiwum 2018
      • Archiwum 2017
      • Archiwum 2016
      • Archiwum 2015
      • Archiwum 2014
      • Archiwum 2013
      • Archiwum 2012
      • Archiwum 2011
      • Archiwum 2010
      • Archiwum 2009
      • Archiwum 2008
      • Archiwum 2007
  • Kontakt
  • ­
Nie znaleziono
Zobacz wszystkie wyniki
Projektowanie i Konstrukcje Inżynierskie
Nie znaleziono
Zobacz wszystkie wyniki
https-nlx-dmgmori-com

Cięcie plazmą: Wpływ stosowanych gazów na jakość procesu

­ Krzysztof Baran
27.08.2015
A A
Cięcie plazmą: Wpływ stosowanych gazów na jakość procesu

Plazma to gazowa materia o wysokiej temperaturze, przewodząca prąd elektryczny. Składa się z dodatnio i ujemnie naładowanych cząstek, a także ze wzbudzonych i obojętnych atomów oraz cząsteczek. Pomiędzy zachodzącymi w obrębie plazmy procesami dysocjacji, jonizacji i rekombinacji istnieje dynamiczna równowaga, przez co plazma pozostaje elektrycznie obojętna. W celu wytworzenia plazmy do celów technicznych należy podgrzać gaz do wysokiej temperatury przy wykorzystaniu odpowiedniego źródła ciepła, bądź poddać go działaniu silnego pola elektrycznego, aby osiągnął postać zjonizowaną.

Proces cięcia plazmowego opracowano pod koniec lat 50-tych ubiegłego stulecia na potrzeby cięcia stali wysokostopowych i aluminium. Technologię tę zaprojektowano z myślą o wszystkich metalach, których ze względu na skład chemiczny nie można ciąć metodą tlenową. Cięcie plazmowe można stosować do cięcia wszelkich materiałów przewodzących prąd elektryczny, m.in. stali konstrukcyjnej, stali wysokostopowych, metali nieżelaznych (np. aluminium i miedzi) oraz metalowych płyt platerowanych. Zależnie od wybranej technologii cięcia plazmowego, wydajności systemu tnącego oraz rodzaju materiału, możliwe jest cięcie elementów o grubości od ok. 0,5 mm do 160 mm.

procesy cięcia termicznego
Rys. 1 Obszary zastosowania procesów cięcia termicznego

Cięcie plazmowe jest niezastąpioną metodą cięcia średnich i grubych blach ze stali wysokostopowej i aluminium. Stosuje się je również przy cięciu elementów z typowej stali konstrukcyjnej o grubości do ok. 50 mm z minimalnym ryzykiem odkształceń, zwłaszcza w przypadku cienkich elementów. Ze względu na niską wartość energii liniowej metoda ta jest szczególnie wskazana do cięcia drobnoziarnistych stali konstrukcyjnych o dużej wytrzymałości.

Jest to proces cięcia termicznego, w ramach którego łuk plazmowy skupiany jest w dyszy palnika. Do cięcia materiałów przewodzących prąd elektryczny wykorzystuje się łuk zależny, powstający podczas przepływu prądu pomiędzy nietopliwą elektrodą (katodą) a obrabianym elementem (anodą). Jest to najpowszechniej stosowana metoda cięcia plazmowego. W przypadku łuku niezależnego jego zajarzenie łuku pomiędzy elektrodą a dyszą. Nawet przy zastosowaniu gazu tnącego zawierającego tlen, decydujące znaczenie ma efekt cieplny łuku plazmowego. Z tego powodu metody tej nie uznaje się za proces cięcia przez spalanie materiału, lecz raczej za metodę cięcia przez topienie.

Gazy plazmowe ulegają w łuku elektrycznym częściowej dysocjacji i jonizacji, dzięki czemu zyskują zdolność przewodzenia prądu (stan plazmy). Za pośrednictwem dużej gęstości energii oraz wysokiej temperatury plazma rozszerza się i przemieszcza w kierunku ciętego elementu z prędkością trzykrotnie przekraczającą prędkość dźwięku.

W wyniku rekombinacji atomów i cząsteczek na powierzchni elementu dostarczona energia zostaje błyskawicznie uwolniona, co potęguje efekt cieplny łuku plazmowego na powierzchni materiału. Temperatura w łuku plazmowym może wynosić nawet 30000 K (tj. 29726,85 °C). Temperatury tego rzędu, w połączeniu ze znaczną energią kinetyczną gazu plazmowego, umożliwiają szybkie cięcie wszelkich materiałów przewodzących prąd, stosownie do ich grubości. W wyniku działania energii cieplnej łuku oraz gazu plazmowego metalowa powierzchnia ulega roztopieniu i częściowo wyparowuje. Energia kinetyczna gazu plazmowego wypycha roztopiony materiał ze szczeliny.

Zastosowanie konkretnego gazu plazmowego uzależnione jest od rodzaju ciętego materiału. Na przykład jednoatomowy gaz, jakim jest argon, i/lub gazy dwuatomowe takie jak wodór, azot, tlen (oraz ich mieszaniny), a także oczyszczone powietrze, stosuje się zarówno w charakterze gazów plazmowych jak również gazów tnących.

Gazy stosowane w procesie cięcia plazmowego

  • Gaz plazmowy – tak określa się wszystkie gazy i mieszaniny gazów, jakie można zastosować do wytworzenia strumienia plazmy oraz do przeprowadzenia procesu cięcia. Łuk plazmowy zasadniczo funkcjonuje w dwóch fazach: w fazie zajarzenia i w fazie cięcia. Z tego powodu gazy plazmowe można podzielić na gazy wykorzystywane do zajarzania łuku i do cięcia – mogą się one różnić zarówno rodzajem gazu jak również natężeniem przepływu.
  • Gaz zapłonowy – służy do zajarzenia łuku plazmowego. Umożliwia proces zajarzenia i/lub zwiększa trwałość elektrody.
  • Gaz tnący – jest niezbędny do procesu cięcia danego materiału przy pomocy łuku plazmowego. Jego zadaniem jest zapewnienie optymalnej jakości cięcia różnych materiałów.
  • Gaz pomocniczy (gaz wirujący, gaz osłonowy) – otacza strumień plazmy, schładzając go i jednocześnie skupiając. W ten sposób pozwala zwiększyć jakość krawędzi cięcia, a także chroni dyszę podczas penetracji materiału i cięcia pod lustrem wody.
Cięcie plazmą: Wpływ stosowanych gazów na jakość procesu

Dobór gazu plazmowego odgrywa decydującą rolę w kwestii jakości i opłacalności procesu cięcia plazmą. Poszczególne materiały, o różnych grubościach, wymagają użycia różnych czynników plazmotwórczych. Czynnikami takimi mogą być gazy, mieszaniny gazowe i woda. Aby uniknąć konieczności dalszej obróbki powierzchni po etapie cięcia plazmowego należy do danego materiału zastosować właściwy gaz plazmowy. Dokonując wyboru należy uwzględnić zarówno fizyczne jak i mechaniczne właściwości gazów. Aby uzyskać wysoką prędkość cięcia i odpowiednią jakość krawędzi, strumień plazmy musi charakteryzować się wysokim poziomem energii i optymalną przewodnością, konieczną do przeniesienia energii cieplnej na metal. Musi również mieć wysoki poziom energii kinetycznej. Właściwości chemiczne – redukujące, obojętne, utleniające – mają istotny wpływ na kształt ciętych krawędzi, a przez to na ewentualne koszty późniejszej obróbki wykończeniowej. Ponieważ gaz plazmowy wchodzi w interakcję z roztopionym metalem, może też znacząco oddziaływać na jakość krawędzi cięcia. W tym kontekście zmianie mogą ulec następujące parametry jakościowe: prostopadłość cięcia, chropowatość powierzchni, zaokrąglenie górnej krawędzi, powstawanie żużlu i spawalność po cięciu.

Podczas dokonywania wyboru gazu plazmowego należy wziąć pod uwagę takie właściwości fizykochemiczne jak: energia jonizacji gazów jednoatomowych, energia dysocjacji gazów wieloatomowych, przewodność cieplna, masa atomowa i masa cząsteczkowa, ciężar właściwy oraz reaktywność chemiczna.

Dobór gazu plazmowego w zależności od materiału i metody cięcia

Funkcję gazów plazmowych mogą pełnić zarówno gazy obojętne jak również aktywne oraz ich mieszaniny. Przeznaczenie, proporcje mieszania oraz parametry czystości gazów do cięcia plazmowego określa norma ISO 14175. Jako gazy plazmowe można stosować argon, wodór, azot, tlen (i ich mieszaniny) oraz powietrze.

Wpływ temperatury na przewodność cieplną gazów
Rys. 2 Wpływ temperatury na przewodność cieplną gazów

W kontekście zalet i wad opisanych poniżej gazów plazmowych żadnego nie uznaje się za optymalny czynnik plazmotwórczy, dlatego w większości sytuacji stosuje się ich kombinacje lub mieszaniny. Przed użyciem danej mieszaniny gazów należy skonsultować się z producentem urządzenia tnącego, w celu potwierdzenia czy wybrane rozwiązanie jest odpowiednie dla konkretnego systemu. Zły dobór mieszaniny skutkuje zazwyczaj skróceniem trwałości materiałów eksploatacyjnych, a nawet uszkodzeniem lub zniszczeniem palnika.

Argon

Argon jest jedynym gazem obojętnym produkowanym na skalę przemysłową poprzez rozdzielenie powietrza, którego jest składnikiem (0,9325% objętościowo). Jako gaz obojętny jest on neutralny chemicznie. Ze względu na znaczną masę atomową (39,95) argon ułatwia wypchnięcie roztopionego materiału ze szczeliny cięcia, wytwarzając silne impulsy skoncentrowanego strumienia plazmy. Dzięki niskiej energii jonizacji (15,76 eV) argon stosunkowo łatwo ulega jonizacji. Z tego powodu często stosuje się go w czystej postaci do zajarzania łuku plazmowego. Dopiero po zajarzeniu łuku zależnego wprowadzany jest główny gaz plazmowy, rozpoczynający proces cięcia. Ze względu na stosunkowo niski współczynnik przewodzenia ciepła (entalpia) argonu nie można uznać za idealny gaz plazmowy – oferuje on dość niskie prędkości cięcia, a ponadto powoduje powstawanie tępych, łuszczących się powierzchni.

Wodór

W porównaniu z argonem wodór ma wyjątkowo niską masę atomową (1) i wysoką przewodność cieplną. Jego niezwykle wysoki maksymalny współczynnik przewodzenia ciepła zbliżony jest do temperatury dysocjacji, co jest następstwem procesów dysocjacji i rekombinacji. Dysocjacja wodoru następuje w przedziale temperatur 2000 K – 6000 K. Pełna jonizacja występuje w temperaturze ok. 25000 K. Rekombinacja i jonizacja dwuatomowego wodoru w początkowej fazie skupia znaczną część energii łuku, prowadząc do zawężenia jego strumienia. Gdy łuk uderza w powierzchnię materiału, naładowane cząsteczki ulegają rekombinacji i uwalniają energię w postaci ciepła, co przyczynia się do wzrostu temperatury roztapianego metalu. Przy udziale wodoru następuje redukcja trwałych tlenków chromu i aluminium, zwiększając płynność roztopionego materiału.

Z powodu opisanych wyżej właściwości fizycznych wodór sam w sobie nie jest optymalnym czynnikiem plazmotwórczym (podobnie jak argon). Jednak w wyniku połączenia pozytywnych cech termicznych wodoru (wysoki poziom energii, entalpia) z wysoką masą atomową argonu, powstaje mieszanina gazowa oferująca szybki przesył energii kinetycznej (masa atomowa) i cieplnej do ciętego materiału.

Mieszaniny argonowo-wodorowe

Mieszaniny argonowo-wodorowe stosuje się powszechnie do cięcia stali wysokostopowych i aluminium. Zaledwie kilkuprocentowy dodatek wodoru do argonu pozwala osiągnąć znacznie wyższą prędkość procesu i jakość krawędzi cięcia. Ponadto redukujący efekt wodoru zapewnia gładkie powierzchnie, bez tlenkowych nalotów.

Tego rodzaju mieszaniny wykorzystuje się do cięcia blach o grubości do 160 mm. Zawartość wodoru może w nich sięgać objętościowo 35% – ostateczna wartość zależy od grubości obrabianego materiału. Dalsze zwiększanie udziału wodoru nie prowadzi już do istotnego przyspieszenia procesu, natomiast przy jego objętości w mieszaninie powyżej 40% na powierzchni cięcia mogą pojawiać się spęcznienia i zagłębienia, a także osady żużlowe na dolnej krawędzi ciętego materiału.

Azot

Pod względem właściwości fizycznych azot można umiejscowić pomiędzy argonem a wodorem. Pierwiastek ten posiada masę atomową 14 – znacznie wyższą od wodoru, ale znacznie niższą od argonu. Współczynnik przewodzenia ciepła i entalpia są w jego przypadku wyższe od argonu i niższe od wodoru. Azot w podobny sposób jak wodór zawęża łuk plazmowy, a jego energia cieplna uwalniana podczas rekombinacji skutecznie upłynnia roztapiany materiał. Z tego powodu może pełnić funkcję niezależnego gazu plazmowego. Azot jako gaz plazmowy zapewnia szybkie i pozbawione nalotów tlenkowych cięcie elementów o cienkich przekrojach. Jego wadą jest stosunkowo duża liczba generowanych bruzd. Bardzo rzadko uzyskuje się cięcia o idealnie równoległych krawędziach. Kąt pochylenia płaszczyzn cięcia uzależniony jest od ustalonej objętości gazu i od prędkości cięcia. Absorpcja azotu na powierzchni przecięcia wywiera niekorzystny wpływ na spawalność. Zwiększone stężenie tego pierwiastka na powierzchni skutkuje powstawaniem pęcherzy gazowych i porowatością roztopionego materiału.

Mieszaniny azotowo-wodorowe

Mieszaniny azotowo-wodorowe stosuje się powszechnie do cięcia stali wysokostopowych i aluminium. Ułatwiają one uzyskiwanie cięć o równoległych krawędziach przy prędkościach znacznie wyższych niż w przypadku argonu. Jednocześnie utlenianie powierzchni przecięcia jest mniejsze niż podczas stosowania czystego azotu. Tego typu mieszaniny – określanie mianem gazów formujących – zawierają do 20% wodoru.

Mieszaniny argonowo-wodorowo-azotowe

Mieszaniny argonowo-wodorowo-azotowe stosuje się powszechnie do cięcia stali wysokostopowych i aluminium. Zapewniają one dobrą jakość krawędzi przecięcia, a w odróżnieniu od mieszanin argonowo-wodorowych, przysparzają mniej problemów związanych z powstawaniem żużlu. Najczęściej stosowane mieszaniny zawierają ok. 50-60% argonu i 40-50% azotu wraz z wodorem. Zawartość azotu z reguły nie przekracza 30%. Zawartość wodoru w mieszaninie uzależniona jest od grubości ciętego elementu: im grubszy materiał, tym więcej powinno być wodoru. Uzupełnienie mieszanin argonowo-wodorowych azotem podczas cięcia stali wysokostopowych i konstrukcyjnych pozwala uzyskiwać wyższe prędkości robocze oraz czyste krawędzie bez osadów żużlowych.

Tlen

Tlen stosuje się w charakterze gazu plazmowego przy cięciu stali niestopowych i niskostopowych. W kontakcie z tlenem zmniejsza się lepkość roztopionego materiału, przez co staje się on bardziej płynny. To z kolei pozwala uzyskać krawędzie wolne od zanieczyszczeń żużlowych i krawędzie górne bez niepożądanych zaokrągleń. W porównaniu z azotem i powietrzem, tlen zapewnia wyższe prędkości cięcia, a ponadto nie powoduje wnikania azotu w powierzchnię przecięcia.

Minimalizuje też ryzyko tworzenia porów w trakcie późniejszego spawania. Ze względu na wysoką prędkość cięcia strefa wpływu ciepła jest minimalna, a właściwości mechaniczne ciętego metalu nie ulegają pogorszeniu. Wysoką prędkość procesu uzyskuje się dzięki reakcji chemicznej pomiędzy tlenem a ciętym materiałem.

mieszanki gazowe do cięcia plazmowego
Tab. 1 Zalecane mieszanki gazowe i ich wpływ na jakość krawędzi ciętego materiału

Dwutlenek węgla

W procesach cięcia plazmowego zasadniczo nie stosuje się dwutlenku węgla w charakterze gazu plazmowego – pełni on głównie rolę gazu pomocniczego lub chłodzącego.

Powietrze

Głównymi składnikami powietrza są azot (78,18% objętościowo) i tlen (20,8%). Połączenie tych dwóch gazów tworzy bardzo energetyczną mieszaninę. Powietrze wykorzystuje się jako gaz plazmowy do cięcia stali niestopowych, niskostopowych, a także stali wysokostopowych i aluminium, najczęściej w procesach cięcia ręcznego oraz do cięcia cienkich blach. W przypadku cięcia stali niestopowych i niskostopowych rozwiązanie to zapewnia równe i stosunkowo gładkie krawędzie. Jednak powietrze jako gaz tnący powoduje również wzrost zawartości azotu w ciętych powierzchniach. W przypadku braku obróbki mechanicznej po zakończeniu procesu, występuje ryzyko późniejszego powstawania porów podczas spawania. W przypadku cięcia aluminium może wystąpić odbarwienie krawędzi.

Woda (para wodna)

Po osiągnięciu określonej temperatury z wody wydzielają się jej składniki – wodór i tlen. Dostarczenie dodatkowej energii powoduje dysocjację i jonizację wody. W metodach cięcia plazmowego z wtryskiem wody i w osłonie mgły wodnej część wody wykorzystywana jest do przenoszenia energii cieplnej, podczas gdy pozostała część odpowiada za skupienie łuku plazmowego i chłodzenie dyszy.

Doprowadzanie gazów do układów cięcia plazmowegoUrządzenia do cięcia plazmowego wykorzystują jeden lub kilka różnych gazów. Wymagane parametry ciśnienia i przepustowości zależą od rodzaju stosowanych urządzeń. W każdym przypadku należy postępować zgodnie ze specyfikacją producenta. Gazy mogą być dostarczane w pojedynczych butlach, w wiązkach butli, w zbiornikach przewoźnych lub w zbiornikach stacjonarnych.

Postać dostarczanego gazu (gazowa lub płynna) zależy głównie od przewidzianego zapotrzebowania.

Wymagana objętość gazów plazmowych i pomocniczych uzależniona jest od różnych czynników, takich jak średnica dyszy, ciśnienie gazu czy prąd cięcia – zwykle wartość ta mieści się w przedziale 20-100 l/min. Przy zużyciu na poziomie ok. 200–300 m³/tydzień gaz dostarcza się w postaci lotnej, natomiast powyżej tej wartości – w postaci płynnej.

W przypadku spadku natężenia przepływu gazu poniżej wartości określonych przez producenta pojawia się ryzyko poważnego uszkodzenia palnika. Dlatego należy przestrzegać zalecanych przez producenta wartości ciśnienia, które nie powinno spaść poniżej 12 barów.

czystość gazów do cięcia plazmowego wg normy ISO 8573
Tab. 2 Wymogi dotyczące czystości gazów do cięcia plazmowego wg normy ISO 8573

Tabela 2 przedstawia minimalne wymagania dotyczące czystości gazów stosowanych do cięcia plazmowego stali niestopowych, niskostopowych, konstrukcyjnych, wysokostopowych, a także aluminium. Nieprzestrzeganie powyższych wartości może w istotny sposób wpływać na jakość i opłacalność procesu ze względu na obniżenie prędkości cięcia.

W sytuacji doprowadzania gazów przy użyciu sprężarki zamiast butli należy bezwzględnie przestrzegać zamieszczonych w tabeli 2 wymogów dotyczących maksymalnej wielkości cząsteczek, zawartości oleju resztkowego i punktu rosy, ponieważ zwiększenie zawartości oleju i poziomu wilgoci może negatywnie wpłynąć na trwałość materiałów eksploatacyjnych, a także zwiększa ryzyko uszkodzenia palnika.

Podsumowanie

Od technologii cięcia metali oczekuje się obecnie coraz wyższej jakości przy jednoczesnym obniżaniu kosztów. Krawędzie ciętych elementów nie powinny wymagać dodatkowej obróbki, za to muszą gwarantować maksymalną dokładność wymiarową. Możliwość osiągnięcia takich efektów przy wykorzystaniu tradycyjnych technik cięcia coraz częściej staje pod znakiem zapytania.

Cięcie termiczne przy użyciu plazmy jest rozwiązaniem konkurencyjnym wobec cięcia metodą tlenową, laserem czy strumieniem wody. Może także stanowić alternatywę dla mechanicznych technik obróbki.

Właściwie dobrane gazy plazmowe i pomocnicze zapewniają zarówno stabilny przebieg procesu, jak również spełnienie oczekiwań jakościowych, oraz optymalne pod względem ekonomicznym cięcie materiałów konstrukcyjnych.

Krzysztof Baran
Linde Gas

Literatura:

C. Landry: Plasma Arc Cutting, Tips for optimising cut quality, Welding Design and Fabrication, 09.1997

Normy: DIN EN 2310-6, DIN EN ISO 9013, ISO 8206, DIN 8580, DIN 8590, DIN EN ISO 14175:08

Materiały Kjellberg Finsterwalde Plasma und Maschinen GmbH

artykuł pochodzi z wydania 7/8 (94/95) lipiec/sierpień 2015

Tagi: cięcie

Powiązane artykuły

ścieżki obróbki ciągłej
Technologie

Cięcie ciągłe; Praktyczne zastosowanie metody i porównanie z metodą klasyczną

Tlen trójpalnikowy
Technologie

Technologie cięcia termicznego i hydroabrazywnego

cięcie ciągłe
Technologie

Metoda cięcia ciągłego na frezarce w wykańczającej obróbce powierzchni

Cięcie laserowe obróbka termiczna
Badania, analizy

Wycinarki laserowe CNC: Czynniki wpływające na dokładność cięcia kształtowego blach

Piła do bloków skalnych
Maszyny i urządzenia

Piła do bloków skalnych

Materiał nie do przecięcia
Aktualności

Materiał nie do przecięcia

najnowsze-wydanie_03-04_2025

Item Innovation Days

Tematyka:

aluminium automatyzacja budowa maszyn CAD cięcie CNC diagnostyka druk 3D energetyka formy wtryskowe innowacje inżynieria materiałowa klejenie kompozyty laser lotnictwo maszyny rolnicze mechanizm MES modelowanie montaż motocykle motoryzacja obliczenia obrabiarki obróbka plastyczna obróbka skrawaniem polskie projekty pomiary programy przemysł kosmiczny przemysł morski przemysł zbrojeniowy robot robotyzacja silniki spawanie stal technologie łączenia tribologia tworzywa sztuczne wynalazki wywiad zgrzewanie łożyska
http-alphatechnology-com-pl-o-nas
https-metaltop-pl
FORMY WTRYSKOWE Integracja Konstrukcji i Technologii Ebook
https-expert-smalley-com-bearing-preload
Projektowanie i Konstrukcje Inżynierskie
  • O czasopiśmie
  • Polityka prywatności
  • Kontakt

© ITER 2007-2025

Nie znaleziono
Zobacz wszystkie wyniki
  • STRONA GŁÓWNA
  • Aktualności
  • Artykuły
    • Analizy, symulacje
    • Badania, analizy
    • Technologie
    • Maszyny i urządzenia
    • Części maszyn i urządzeń
    • Konstrukcje
    • Rozwiązania
    • Projektowanie
    • Materiały
    • Historia
    • Inne
  • Czasopismo
    • O czasopiśmie
    • Jak zakupić
    • Archiwum
      • Archiwum 2025
      • Archiwum 2024
      • Archiwum 2023
      • Archiwum 2022
      • Archiwum 2021
      • Archiwum 2020
      • Archiwum 2019
      • Archiwum 2018
      • Archiwum 2017
      • Archiwum 2016
      • Archiwum 2015
      • Archiwum 2014
      • Archiwum 2013
      • Archiwum 2012
      • Archiwum 2011
      • Archiwum 2010
      • Archiwum 2009
      • Archiwum 2008
      • Archiwum 2007
  • Kontakt
  • ­

© ITER 2007-2025